arXiv:2505.20314v3 [cs.LO] 20 Jun 2025

A-Nets: Interaction-Based System for
Optimal Parallel A\-Reduction

Daniel Augusto Rizzi Salvadori

Abstract

I present a model of universal parallel computa-
tion called A-Nets, and a method to translate A-terms
into A-nets and back. Together, the model and the
method constitute an algorithm for optimal paral-
lel A-reduction, solving the longstanding enigma with
I show that the A-calculus
can be understood as a projection of A-Nets—one

groundbreaking clarity.

that severely restricts the structure of sharing, among
other drawbacks. Unhindered by these restrictions,
the A-Nets model opens the door to new parallel pro-
gramming language implementations and computer
architectures that are more efficient and performant

than previously possible.

Interactive Demo and Source Code

https://deltanets.org

https://github.com/danaugrs/deltanets

1. Introduction

The A-calculi are beautifully simple yet powerful
models of universal computation. Consisting of ab-
stractions, variables, and applications, A\-terms can ex-
press any computable function [Chu36, Tur36, Tur3?7,
Chu41]. In addition to being central pillars in com-
putation theory, the A-calculi also constitute practical
frameworks underpinning all functional programming
languages. Four A-calculi are pertinent to this paper—
the three substructure A-calculi [Jac93], and the full
A-calculus [Bar84]:

e AL-calculus: the linear A-calculus, in which every
bound variable occurs exactly once.

« A\A-calculus: the affine A-calculus, in which every
bound variable occurs either once or not at all.

« M-calculus': the relevant A-calculus, in which ev-
ery bound variable occurs at least once.

« AK-calculus: the full A-calculus in which bound
variables can occur any number of times.

The AL-calculus can be regarded as a cornerstone

Lthe original A-calculus defined by Church [Chu36, Chu4l].

which can be extended in one of three ways: with era-
sure (analogous to weakening in logic), resulting in
the AA-calculus; with sharing (analogous to contrac-
tion in logic), resulting in the AI-calculus; or with both
erasure and sharing, resulting in the full AK-calculus.
Additionally, the AK-calculus can also be obtained
by extending the AA-calculus with sharing, or the
Al-calculus with erasure. These relationships are il-
lustrated in Figure 1.

erasure . : : " sharing

Figure 1: The relationships between the four
A-calculi in terms of erasure and sharing.

In the A-calculi, a reduction strategy is optimal if
and only if it reaches the normal form (if it exists)
without perfoming any unnecessary reduction steps
[Lev78, Lev80]. There are two types of unnecessary
reductions:

1. Reduction of a later-discarded subexpression.
2. Reduction of a duplicated subexpression.

The first type can only occur with erasure, i.e.,
when some abstractions do not make use of their
bound variables. Whenever such an abstraction is ap-
plied, the argument is discarded, and any reductions
previously performed in the argument subexpression
are rendered unnecessary. Naturally, this cannot hap-
pen in the AL-calculus nor in the Al-calculus. This
first type of unnecessary reduction can be entirely
avoided in the AA-calculus and in the AK-calculus by
adhering to some reduction orders, including normal
order reduction [Bar87].

The second type of unnecessary reduction can
only occur with sharing, i.e., when some abstractions’
bound variables occur multiple times. Whenever such
an abstraction is applied, the argument is duplicated,
and any reducible expressions in the argument subex-

https://deltanets.org
https://github.com/danaugrs/deltanets
https://arxiv.org/abs/2505.20314v3

pression are duplicated with it. Naturally, this can-
not happen in the AL-calculus nor in the AA-calculus.
Lévy has shown that there are A-terms with sharing
for which no reduction order is optimal [Lev78, Lev80].
The A-calculus, as a sequential substitution machine,
is therefore inadequate to express optimal reduction
for all A-terms. Does a more fundamental model of
computation exist which is able to express optimal re-

duction for all A-terms?

In order to avoid sharing-related unnecessary re-
ductions in the AI- and AK-calculi, it is useful to
represent A-terms as graphs. Identical subexpressions
can then be represented by the same shared subgraph,
which only needs to be reduced once. The process of
reduction is then expressed as a sequence of graph
operations—a technique known as graph reduction
[Wad71]. In the A-calculi, applying a function destruc-
tively modifies its body. This presents a challenge in
graph reduction when a function is shared, since it
may be applied any number of times, each with a dif-
ferent argument. A simple solution is to duplicate the
shared function’s entire subgraph before applying it.
This solution, however, leads to the second type of
unnecessary reduction because it duplicates reducible
expressions. It’s possible to mitigate the number of
duplicated reducible expressions, and thus of unneces-
sary reductions, by sharing, instead of duplicating, the
function’s mazimal free subgraphs—the largest sub-
graphs in the function’s body that don’t make use of
the function’s bound variable [Wad71]. An ordering
can also be imposed such that all reducible expres-
sions inside a function are first reduced, and only then
is the function duplicated (while sharing its maximal
free subgraphs). However, a critical problem remains:
this procedure never terminates in cyclic graphs, and
cyclic graphs can arise from non-cyclic ones through
regular reduction [Wad71]. In [Wad71] this is resolved
by duplicating subgraphs whenever necessary to avoid
cycles.

The first algorithms for A-calculi reduction which
don’t perform any unnecessary S-reductions were pro-
posed in [Lam89] and [Kat90].
idea introduced was that of interior sharing of sub-

The common core

graphs. Interior sharing enables the incremental du-
plication of shared functions, which, in turn, fully pre-
vents sharing-related unnecessary (-reductions. The
challenge of interior sharing lies in the management,
throughout reduction, of multiple simultaneous shar-
ing contexts, each of which can fully or partially over-
lap any number of others. Moreover, sharing contexts
can be recursive—a shared term can be referenced

from inside itself any number of times. In [Lam89],
interior sharing is accomplished through the use of
Remarkably, the
complex challenge then boils down to a simple ques-

explicit fan-in and fan-out nodes.

tion: when a particular fan-in meets a particular fan-
out, should they annihilate one another or duplicate
one another? In [Lam89], this is solved by associating
a non-negative integer with each fan and introduc-
ing three delimiter node types to regulate fan num-
bers through graph-rewriting rules. When two fans
meet, they are annihilated if and only if their num-
bers are equal, and they duplicate one another oth-
erwise (Figure 2). The delimiters realize a notion of
enclosure around fans, ultimately ensuring that only
fans belonging to the same enclosure annihilate one

B %\X/A
A VY

Figure 2: Interacting fans annihilate one another if
they are equal, otherwise they duplicate one another.

another.

N/

a#b

a=1b
<

Concurrently, a graphical meta-model of parallel
computation called interaction nets was introduced in
[Lafo0]. It was later refined and expanded in [Laf97],
Mod-
els adhering to this framework are called interaction

once its significance was understood better.

systems. An interaction system is specified by a set
of agent types and a set of interaction rules—local
graph rewriting rules that operate on pairs of con-
nected agents. Agents are nodes that have one princi-
pal port and any number of auziliary ports, including
zero. When two agents are connected via their princi-
pal ports they form an active pair, and an interaction
rule can then be applied to that pair. Since each agent
can only be part of a single active pair at a time, inter-
action systems possess a one-step diamond property,
which I denote as perfect confluence?. An extraordi-
nary consequence of perfect confluence is that every
normalizing interaction order produces the same re-
sult in the same number of interactions. Additionally,
since interaction rules are local, they can be applied
simultaneously without synchronization. These prop-
erties make interaction systems highly suitable for ex-
pressing optimal parallel algorithms.

An interaction system for A-calculi reduction based
on [Lam89], along with a translation method from
and to A-terms, was proposed in [GAL92a, GAL92b].

2Some authors denote this as strong confluence, but strong confluence has historically denoted a weaker property which is not
one-step. I propose using the term perfect confluence for the one-step variant to avoid confusion.

A similar interaction system, combined with a dif-
ferent translation method, was presented in [AG98].
These interaction systems employ indexed agents
called brackets and croissants, which increment and
decrement, respectively, the index of higher-index
agents they interact with. As explained in detail in
[AG98], there are many ways to translate A-terms
into interaction nets using brackets and croissants.
These agents effectively delimit sharing scopes, and,
as such, are also referred to as delimiters. A compre-
hensive analysis and comparison of the computational
efficiency of these algorithms, including the original
[Lam89], was supplied in [LM99]. Unfortunately, all
these algorithms have frustrating characteristics that
profoundly undermine reduction performance. Crit-
ically, delimiters accumulate during reduction until
delimiter interactions completely overwhelm fan in-
teractions. Additionally, delimiters are often present
in nets associated with A-terms that have no sharing,
serving no purpose there.

A more recent interaction system for A-calculi re-
duction, called Lambdascope, was presented in [OLO04].
It uses five agent types: an abstractor, an applicator, a
duplicator (an indexed fan), an eraser, and an indexed
delimiter. In Lambdascope, applying an abstraction
effectively spawns two zero-indexed delimiters. This
process, along with other interaction rules, preserves
the scope of each abstraction after it has been applied.
This scope invariant, in turn, ensures interacting du-
plicators annihilate and commute when appropriate.
Delimiters move outward, expanding each scope as
much as possible. Sibling scopes eventually coalesce,
which helps reduce the number of total scopes and
thus the number of total delimiters. However, sibling-
less scopes and their delimiters are preserved perpet-
ually. As a result, Lambdascope also suffers from a
devastating accumulation of delimiters. Additionally,
since there’s no mechanism to decrement indexes, they
grow without bound as reduction progresses.

For example, when reducing the non-normalizing
A-term (Az.xz z)(Ay.yy) with these algorithms, every
iteration creates new delimiters. Each new delimiter
takes up additional memory (space), and leads to ad-
Addition-
ally, the existing algorithms fail to establish a global

ditional unnecessary interactions (time).

reduction order, which is unfortunately critical to en-
sure that all nets associated with normalizing A-terms
normalize. Not only are the existing algorithms un-
satisfactory from a theoretical perspective, their inef-
ficiencies preclude them from being used at the core
of programming language implementations.

In this paper, I present a model of universal par-
allel computation called A-Nets, and a method to

translate A-terms into A-nets and back. Together,
the system and translation method constitute an al-
gorithm for optimal parallel A-reduction. As an in-
teraction system, the core of the model is perfectly
confluent: every normalizing reduction order produces
the same result in the same number of steps. The
core model is then necessarily extended with non-
interaction canonicalization rules, which depart from
the interaction paradigm. Along with a global reduc-
tion order, canonicalizations ensure Church—Rosser
confluence and optimality in nonlinear systems. The
A-Nets algorithm solves the longstanding enigma of
optimal A-calculi reduction with groundbreaking clar-
ity. Instead of making use of delimiters, sharing is ex-
pressed through a single agent type which allows any
number of auxiliary ports, called a replicator. Each
instance of a replicator incorporates information that
in previous models was spread across multiple agents,
such as indexed fans and delimiters. This consolida-
tion of information enables simplifications that were
previously unfeasible, and leads to constant memory
usage in the reduction of (Az.zx)(Ay.yy), for exam-
ple. Finally, T show that the A-calculus can be un-
derstood as a projection of A-Nets. The additional
degrees of freedom in A-Nets allow it to realize opti-
mal reduction in the manner envisioned by Lévy, i.e.,
no reduction operation is applied which is rendered
unneccessary later, and no reduction operation which
is necessary is applied more than once.

2. Core Interaction System

At its core, a A-net is an interaction net with three
agent types: a fan, an eraser, and a replicator.

fan eraser replicator
d; € Z l,i,n € N 0<i1<n

Figure 3: The three A-Nets agent types.

Fans have two auxiliary ports, and erasers have
none. Each replicator can have a different natural
number of auxiliary ports, and each of those ports has
an associated integer called a level delta. Additionally,
each replicator has an associated non-negative integer
called a level. As a point of reference, an agent’s aux-
iliary ports are ordered in a clockwise orientation, i.e.,

from left to right when the principal port points down.

Fans are sufficient to express optimal parallel re-
duction in the AL-calculus. Erasers are needed to
express optimal parallel reduction involving erasure.
Replicators are needed to express optimal parallel re-
duction involving sharing. As such, the A-Nets core
interaction system decomposes perfectly into three
overlapping subsystems, each analogous to a substruc-
ture A-calculus. The full A-Nets system may also be

referred to as AK-Nets. The four systems are:

+ AL-Nets:
only uses fans, and expresses optimal parallel re-

the linear A-Nets subsystem, which

duction in the AL-calculus.

« AA-Nets: the affine A-Nets subsystem, which
uses fans and erasers, and expresses optimal par-
allel reduction in the AA-calculus.

o AI-Nets: the relevant A-Nets subsystem, which
uses fans and replicators, and expresses optimal
parallel reduction in the AI-calculus.

« AK-Nets:
fans, erasers and replicators, and expresses opti-

the full A-Nets system, which uses
mal parallel reduction in the AK-calculus.

When equal agents interact, they annihilate one
another. In general, two replicators are equal if and
only if they have the same level, number of auxiliary
ports, and level deltas. However, when a A-net is
constructed from a A-term via the translation method
presented in the next section, interacting replicators
that have the same level are guaranteed to be equal.
As such, only replicator levels need to be compared
for equality in practice. Equal-agent interactions are
called annihilations.

When distinct agents interact, each agent travels
through and past the other and is potentially copied
or erased in the process, depending on how many aux-
iliary ports the other agent has. Since an eraser has no
auxiliary ports, it erases every agent it interacts with.
As such, distinct-agent interactions involving erasers

Figure 4: The core A-Nets interaction rules.

are called erasures. The remainder of distinct-agent
interactions are called commutations. When a replica-
tor interacts with a fan, the replicator travels through
and out of the fan’s two auxiliary ports, resulting in
two exact copies of the replicator. Simultaneously, the
fan travels through and out of all of the replicator’s
auxiliary ports, resulting in a fan for each replicator
auxiliary port.

When two distinct replicators interact, the lower-
level one replicates the higher-level one once for each
of the lower-level one’s auxiliary ports, while, simulta-
neously, the higher-level one duplicates the lower-level
one once for each of the higher-level one’s auxiliary
ports. Note that whereas a duplication produces ex-
act copies, a replication produces copies that may or
may not be exact. Replicators are so named because
the copies they produce of other replicators are, by de-
sign, not necessarily exact. Each resulting replica of
the higher-level replicator may have a different level,
determined by the level delta associated to the aux-
iliary port of the lower-level replicator that it travels
out of. The level of each resulting replica is the sum
of the level of the original higher-level replicator and
the appropriate level delta of the lower-level replica-
tor. The A-Nets interaction rules are illustrated in
Figure 4.

3. From)-terms to A-nets

Definition. Let ¥ = {L,A,I,K}. For all S € X, let
Ag be the set of all A\S-terms and Ag be the set of
all AS-nets.
o5 Ag = AG which maps every AS-term to a canon-
ical AS-net.

For all S € X, there exists a bijection

Ag = {(ZSS()\S) | Vg € AS}
A% = {05 | Vo5 € AG, d5 5 6%} (proper AS-nets)

(canonical AS-nets)

A§ C AL C Ag

The bijections ¢g, VS € 3%, are defined induc-
tively, with the rules for the general ¢k case illus-
trated in Figure 5. In the description that follows,
the minor differences in ¢, ¢4, and ¢; are noted
where appropriate. FEach outer dashed rectangle in
Figure 5 contains a A-net fragment that represents
the A-term specified above it. Each inner dashed rect-
angle is a slot for the A-net that represents the in-
ner term. Each thick vertical dashed line represents a
non-negative integer number of parallel wires (includ-
ing zero). Every dashed rectangle, outer or inner, has
the same interface—a single wire entering at the top
and a non-negative integer number of wires leaving

at the bottom. Each A-term has a subscript associ-

ated with it, which represents the level of that term.
The level of the outermost term is set to zero, which
inductively sets all other levels. The level of an ap-
plication’s argument is one greater than that of the
application itself, and the level of a replicator is one
greater than that of its associated abstraction. These
levels are ultimately used to determine the level and
level deltas of replicators.

[Az.M];, z € FV (M)

Az. M), © & FV (M)

[a]i, = & FV ()
R —
[];, x € FV (%)

Figure 5: The inductive definition of ¢, a bijection
which translates AK-terms into canonical AK-nets.

There are two A-net fragments for variables, one
for variables that are free in the outermost A-term
(r € FV (%)), and one for variables that are not
(x & FV (%)), i.e., that are bound by some abstrac-
tion. The free-variable fragment contains a single-port
(non-agent) node, which is represented by the name of
the associated free variable in the A-term. The bound-
variable fragment is just a vertical wire. An instance
of the bound-variable fragment which represents the
1th occurrance of a bound variable in the associated
A-term has its bottom wire endpoint connected to the
1th auxiliary port of the replicator that shares that
variable. The bottom wire endpoint of each bound-
variable fragment has a level associated with it, which
is equal to the level of the variable. These wire end-
point levels are referenced in the fragment that fea-

tures a replicator, in the definition of the level deltas
d;. The level delta associated to an auxiliary port of a
replicator is equal to the level of the wire connected to
that auxiliary port minus the level of the replicator.

There are also two A-net fragments for abstrac-
tions, one for those which use their bound variables
and one for those which don’t. In both, the abstrac-
tion itself is represented by a fan pointing up, labelled
with a A®. The principal port of the fan is the par-
ent port of the abstraction. The first auxiliary port
of the fan is a child port, connected to the A-net that
represents the body of the abstraction. The second
auxiliary port represents the variable of the abstrac-
tion, and since it is connected to the parent of the
variable, it is another parent port. If an abstraction
doesn’t use its bound variable, the fan’s second aux-
iliary port is connected to an eraser. The fragment
with this eraser is only needed when translating ex-
pressions from A-calculi with erasure, and, as such, it
is exclusively part of ¢4 and ¢x. When translating ex-
pressions from A-calculi with sharing, if an abstraction
uses its bound variable, then the fan’s second auxil-
iary port is generally connected to the principal port
of a replicator, which shares the abstraction’s vari-
able among the bound-variable fragments that repre-
sent its various occurances in the A-term. However,
in a canonical A-net, a replicator with a single aux-
iliary port and a level delta of zero, regardless of the
replicator’s level, is equivalent to a wire. Therefore
such replicators are never created in the first place,
and the appropriate bound-variable fragment’s bot-
tom wire is connected directly to the abstraction fan’s
second auxiliary port instead. In ¢r and ¢4, which
translate A-terms without sharing, the fragment with
the replicator is modified such that the replicator is
substituted by a single wire in the same way.

Finally, there is a fragment for applications, in
which the application itself is represented by a fan
pointing down, labelled with an @3. The first auxil-
iary port of the fan is the parent port of the appli-
cation. The principal port of the fan is a child port,
connected to the A-net that represents the function
A-term. The second auxiliary port is another child
port, connected to the A-net that represents the ar-
gument A-term. In addition to the fragments shown
in Figure 5, every canonical A-net has a single root
(non-agent) node, represented by a small circle, con-
nected to the top of the outermost A-net fragment.
Together, the root node and the free variable nodes
constitute the interface of a canonical A-net.

Note that both applications and abstractions are
represented by fans, and [-reduction is expressed

through fan annihilation. Whether a specific fan in
a A-net represents an abstraction or an application
can always be determined by inspecting the net (with-
out fan labels) and tracing paths from the root node.
While abstraction fans have two parent ports and one
child port, application fans have one parent port and
two child ports. Every port of any node (including
non-agent nodes) in a proper A-net is either a child
port or a parent port, and every wire connects a child
port with a parent port. Although this duality has no
direct bearing on the interaction process, it is clearly
present, and it is instrumental in some discussions.

All replicators in a canonical A-net are unpaired
fan-ins: each auxiliary port is a parent port and the
principal port is a child port. However, during re-
duction, fan-out replicators may be produced. In a
fan-out replicator, the principal port is a parent port
and each auxiliary port is a child port. Every commu-
tation between a fan and a replicator (either a fan-in
or a fan-out) always produces a fan-in and a fan-out.
While every fan-out is paired with at least one up-
stream fan-in, the converse is not true: fan-ins may or
may not be paired. Locally determining this pairing
efficiently is the purpose of the level delta system.

In some ways, a fan is just a replicator with two
auxiliary ports, zero level, and zero deltas. If replica-
tors were allowed to have zero auxiliary ports, then an
eraser could also just be a replicator with no auxiliary
ports and zero level (or no level). It’s tempting to
attempt to consolidate the three agents into one—the
A-agent, if you will. However, fans and replicators
have a critical distinction in the types of their auxil-
iary ports: a replicator’s auxiliary ports are either all
parent ports or all child ports, while a fan has one of
each. This affects how replicator pairedness is tracked:
after fan replication the resulting replicators become
paired whereas in replicator replication they keep their
original status.

In standard A-Nets, replicators have absolute lev-
els, i.e., the initial level of each replicator is exactly
determined by how many times a path from the root
to the replicator’s principal port traverses fans out
of their second auxiliary ports. There exists a dual
formulation of the A-Nets system to this where repli-
cators have relative levels—all replicators start with
level zero, and a replicator’s level gets incremented
when it traverses out of the second auxiliary port of a
fan.

3Fan labels are just a visual aid and do not affect how fans interact with other agents.

4. From A-nets back to \-terms

The only interaction rule in AL-Nets is fan anni-
hilation, which expresses -reduction. Therefore if n
B-reductions normalize a AL-term ¢, then n interac-
tions normalize the AL-net ¢, (t). As a result, in the
A L-Nets system, all proper nets are canonical, and fan
annihilations can be applied in any order, with perfect
confluence. Compared to AL-Nets, the other A-Nets
systems have additional interaction rules, which don’t
have A-calculus analogues.

In A-Nets systems with erasure, applying an ab-
straction which doesn’t use its bound variable results
in an eraser becoming connected to a parent port.
Such an eraser could erase abstraction fans and fan-
out replicators, but if it reaches the parent port of
an application fan, for example, which is an auxiliary
port, the erasure process would cease. As a result,
absent additional rules, irreducible subnets would be
produced which don’t have a A-calculus analogue. As
an extreme example, applying an abstraction which
doesn’t use its bound variable to an argument which
only uses globally-free variables produces a subnet
which is disjointed from the root. In order to elimi-
nate all such subnets a final canonicalization reduction
step is introduced in A-Nets systems with erasure: all
parent-child wires starting from the root are traversed
and nodes are marked. All non-marked nodes are then
erased, and wires that were connected to these nodes
are instead connected to erasers. This final canonical-
ization erasure step dispenses with the need to apply
erasure and eraser annihilation rules. In fact, this step
can be applied at any point during reduction in order
to reduce the net size, effectively trading computation
(time) for memory (space). In order to keep memory
usage to a minimum, this step should be applied after
every application of an abstraction which doesn’t use
its bound variable.

In order to ensure that no reduction operations are
applied in a subnet that is later going to be erased, a
sequential leftmost-outermost reduction order needs
to be followed. Therefore, in the A A-Nets system, fan
annihilations are applied in leftmost-outermost order,
with the final erasure canonicalization step ensuring
perfect confluence, and producing a normal canonical
A A-net.

During reduction of Al- and AK-Nets, replica-
tors can combine into replicator trees. A replicator
tree is a subnet containing only replicator agents such
that each one’s principal port is connected to an aux-
iliary port of another, except for the tree’s root repli-
cator. In general, replicators that belong to the same

tree cannot be merged during reduction because they

may be paired with other replicators elsewhere. How-
ever, if consecutive replicators in a replicator tree are
known to be unpaired, they can be safely merged to-
gether. Unpaired replicator merging is a canonicaliza-
tion rule present in both AI- and AK-Nets. Addition-
ally, in the A K-Nets system, it is possible to eliminate
unpaired replicators’ auxiliary ports which are con-
nected to erasers—a canonicalization rule called un-
paired replicator decay. As part of unpaired replicator
decay, if an unpaired replicator is left with a single
auxiliary port with a level delta of zero, it is replaced
by a wire, as it is equivalent to one. This canoni-
calization rule is applied to all unpaired replicators
as part of the erasure canonicalization step. It can
also be lazily applied to the involved unpaired replica-
tor, immediately before the fan replication, replicator
replication, and aux fan replication rules.

Replicators start as unpaired, and this status is
When an unpaired
replicator interacts with a fan, the status of both re-

propagated across interactions.

sulting replicators changes to unknown. If an unpaired
replicator (A) is connected to a consecutive replicator
(B) of unknown status via an auxiliary port, and a
certain local constraint is met, then the consecutive
replicator can be determined to be unpaired, and the
two can then be merged. The constraint is met when
the second replicator’s level is greater than or equal
to the first replicator’s level, but no greater than the
first replicator’s level plus the level delta of the auxil-
iary port that connects them: 0 <lp — 14 < d. Under
this constraint, no replicator is able to interact with
the second replicator before the first replicator is an-
nihilated. Since the first replicator is unpaired, it can
never be annihilated, and the second one must be un-
paired as well.

It is possible to limit replicators to have at most
two auxiliary ports, or even exactly two auxiliary
ports. This imposes the smallest possible upper bound
on interaction rule complexity and agent size, making
the total number of interactions an effective measure
of time complexity, and the total number of agents an
effective measure of space complexity. A tree of such
replicators can stand in for any replicator with any
number of auxiliary ports.

Replicator merging is a canonicalization rule and
not an interaction rule because it involves two agents
that are connected via ports that aren’t both princi-
pal. Merging replicators as early as possible reduces
the total number of reductions and the total number
of agents, improving space and time efficiency. The re-
duction order which guarantees that replicator merges
happen as early as possible, minimizing the total num-
ber of reductions, is a sequential leftmost-outermost

Figure 6: The aux fan replication canonicalization rule in Al- and AK-Nets.

order—the optimal reduction order for AA-, AI- and
AK-Nets. In fact, any reducible pair that eventually
reaches the leftmost-outermost position unchanged
can be reduced at any time. For example, all potential
annihilations in the spine that don’t involve unpaired
replicators can be applied in any order, because they
will eventually reach the top of the spine unchanged.
On the other hand, a potential commutation that in-
volves an unpaired replicator may not reach the top of
the spine unchanged, as the involved replicator may be
merged with another beforehand, rendering its early
application suboptimal.

To see how leftmost-outermost reduction is opti-
mal in Al- and AK-Nets, observe that no commuta-
tion involving an unpaired replicator can be applied
before that replicator is merged—if merging it is at
all possible. Take a leftmost-outermost interaction be-
tween two replicators. The fan-out replicator is nec-
essarily paired. If the fan-in replicator is unpaired
and can eventually be merged, then the replicator
merging—or any intermediate reductions leading to
it—would occur higher in the spine and would be ap-
plied first. This reasoning holds even in the presence
of loops. In AK-Nets, the leftmost-outermost order is
critical not only to achieve optimality but also to en-
sure that all nets associated with normalizing A-terms
normalize. As for the remaining rules, the A-Nets
systems inherit their optimality guarantee from the

interaction nets paradigm.

Additionally, in AI- and AK-Nets, the reduction
process needs to be split in two phases. In the first
phase the core interaction rules and unpaired replica-
tor merging are applied in leftmost-outermost order
until no further reduction can be applied. The re-
duction process then switches to the second phase,
in which the auz fan replication rule (illustrated in
Figure 6) replaces the core fan replication rule. This

second phase can be alternatively understood as modi-
fying all fans such that the first auxiliary port becomes
the principal port. This process transforms the shar-
ing structures so that all fan-out replicators are elim-
inated, all appropriate subnets are replicated, and all
fan-in replicators accumulate at the variable port of
abstraction fans. The result is a canonical Al-net or,
after the final erasure canonicalization step, a canon-
ical AK-net. Since all normal A-nets are canonical,
the A-Nets systems are all Church—Rosser confluent.

Definition. For all S € X and for all g € Ag, if
Ag is mormalizing, \s B-reduces to ¢5'(Qs(ps(As)))
where Qg : A% — AG reduces a proper AS-net through
interaction and canonicalization rules as defined in
this section until it is normal and canonical.

Theorem. Since d)gl o Qg is idempotent VS € 3, the

set of all AS-terms, Ag, is a projection of proper
AS-nets:

As = {651 (2s(08)) | V8% € AL}, VS € %

Moreover, since Ag is closed under (-reduction and
Ag is closed under Ag-interactions and canonicaliza-
tions, the AS-calculus can be interpreted as a projec-
tion of AS-Nets, VS € X..

5. Conclusion

The existence of nonlinear proper A-nets which
are not canonical reflects the additional degrees of
freedom that interior sharing introduces, which are
not present in the A-calculus. A given Al-term can
potentially be represented by many different proper
Al-nets, which differ only with respect to their shar-
ing structure. As an example, take a proper AI-net n,
with ¢;'(Qr(n)) = MM, for some Al-term M. The

A -net n may have two distinct but equal subnets that
each represent M, or it may have a single such subnet
which is shared among the two occurrances in the ap-
plication. In fact, the sharing structure of n could be
arbitrarily complex. These additional degrees of free-
dom allow A-Nets to realize optimal reduction in the
manner envisioned by Lévy, i.e., no reduction opera-
tion is applied which is rendered unneccessary later,
and no reduction operation which is necessary is ap-
plied more than once.

References

[Chu36] A. Church, An Unsolvable Problem of Ele-

mentary Number Theory, 1936

[Tur36] A. M. Turing,

bers, with an Application to the Entschei-

On Computable Num-

dungsproblem, 1936

[Tur37] A. M. Turing,

definability, 1937

Computability and -

[Chudl] A. Church, The Calculi

Conversion, 1941

of Lambda-

[Wad71] C.P. Wadsworth, Semantics and Pragmat-
ics of the Lambda Calculus, PhD Thesis,

Oxford, 1971

[Lev78] J.-J. Lévy, Réductions Correctes et Op-
timales dans le Lambda-Calcul, Doctorat

d’Etat, Paris 7, 1978

[Lev80] J.-J. Lévy, Optimal Reductions in The

Lambda-Calculus, 1980

[Bar84|

[Bar87]

[Lam89]

[Kat90]

[Lafoo]

[GALY2a]

[GAL92b]

[Jac93]

[Lafo7]

[AGYS]

[LM99]

[0L04]

H. P. Barendregt, The Lambda Calculus:
Its Syntax and Semantics, 1984

H. P. Barendregt, J. R. Kennaway,
J. W. Klop, M. R. Sleep, Needed Reduc-
tion and Spine Strategies for the Lambda
Calculus, 1987

J. Lamping, An Algorithm for Optimal
Lambda Calculus Reduction, 1989

V. K. Kathail, Optimal Interpreters for
Lambda-calculus Based Functional Lan-
guages, 1990

Y. Lafont, Interaction Nets, 1990

G. Gonthier, M. Abadi, J.-J. Lévy, The
Geometry of Optimal Lambda-Reduction,
1992

G. Gonthier, M. Abadi, J.-J. Lévy, Linear
Logic Without Bozxes, 1992

B. Jacobs, Semantics of lambda-I and of
other substructure lambda calculi, 1993

Y. Lafont, Interaction Combinators, 1997

A. Asperti, S. Guerrini, The Optimal Im-
plementation of Functional Programming
Languages, 1998

J. L. Lawall, H. G. Mairson, Optimality
and inefficiency: what isn’t a cost model
of the lambda calculus?, 1999

V. van Oostrom, K.-J. van de Looij, Lamb-
dascope, 2004

	Introduction
	Core Interaction System
	From -terms to -nets
	From -nets back to -terms
	Conclusion

