
ar
X

iv
:2

50
5.

20
31

4v
3

 [
cs

.L
O

]
 2

0
Ju

n
20

25

∆-Nets: Interaction-Based System for

Optimal Parallel λ-Reduction

Daniel Augusto Rizzi Salvadori

Abstract

I present a model of universal parallel computa-

tion called ∆-Nets, and a method to translate λ-terms

into ∆-nets and back. Together, the model and the

method constitute an algorithm for optimal paral-

lel λ-reduction, solving the longstanding enigma with

groundbreaking clarity. I show that the λ-calculus

can be understood as a projection of ∆-Nets—one

that severely restricts the structure of sharing, among

other drawbacks. Unhindered by these restrictions,

the ∆-Nets model opens the door to new parallel pro-

gramming language implementations and computer

architectures that are more efficient and performant

than previously possible.

Interactive Demo and Source Code

https://deltanets.org

https://github.com/danaugrs/deltanets

1. Introduction

The λ-calculi are beautifully simple yet powerful

models of universal computation. Consisting of ab-

stractions, variables, and applications, λ-terms can ex-

press any computable function [Chu36, Tur36, Tur37,

Chu41]. In addition to being central pillars in com-

putation theory, the λ-calculi also constitute practical

frameworks underpinning all functional programming

languages. Four λ-calculi are pertinent to this paper—

the three substructure λ-calculi [Jac93], and the full

λ-calculus [Bar84]:

• λL-calculus: the linear λ-calculus, in which every

bound variable occurs exactly once.

• λA-calculus: the affine λ-calculus, in which every

bound variable occurs either once or not at all.

• λI-calculus1: the relevant λ-calculus, in which ev-

ery bound variable occurs at least once.

• λK-calculus: the full λ-calculus in which bound

variables can occur any number of times.

The λL-calculus can be regarded as a cornerstone

which can be extended in one of three ways: with era-

sure (analogous to weakening in logic), resulting in

the λA-calculus; with sharing (analogous to contrac-

tion in logic), resulting in the λI-calculus; or with both

erasure and sharing, resulting in the full λK-calculus.

Additionally, the λK-calculus can also be obtained

by extending the λA-calculus with sharing, or the

λI-calculus with erasure. These relationships are il-

lustrated in Figure 1.

λL

λA λI

λKerasure sharing

Figure 1: The relationships between the four
λ-calculi in terms of erasure and sharing.

In the λ-calculi, a reduction strategy is optimal if

and only if it reaches the normal form (if it exists)

without perfoming any unnecessary reduction steps

[Lev78, Lev80]. There are two types of unnecessary

reductions:

1. Reduction of a later-discarded subexpression.

2. Reduction of a duplicated subexpression.

The first type can only occur with erasure, i.e.,

when some abstractions do not make use of their

bound variables. Whenever such an abstraction is ap-

plied, the argument is discarded, and any reductions

previously performed in the argument subexpression

are rendered unnecessary. Naturally, this cannot hap-

pen in the λL-calculus nor in the λI-calculus. This

first type of unnecessary reduction can be entirely

avoided in the λA-calculus and in the λK-calculus by

adhering to some reduction orders, including normal

order reduction [Bar87].

The second type of unnecessary reduction can

only occur with sharing, i.e., when some abstractions’

bound variables occur multiple times. Whenever such

an abstraction is applied, the argument is duplicated,

and any reducible expressions in the argument subex-

1the original λ-calculus defined by Church [Chu36, Chu41].

https://deltanets.org
https://github.com/danaugrs/deltanets
https://arxiv.org/abs/2505.20314v3

pression are duplicated with it. Naturally, this can-

not happen in the λL-calculus nor in the λA-calculus.

Lévy has shown that there are λ-terms with sharing

for which no reduction order is optimal [Lev78, Lev80].

The λ-calculus, as a sequential substitution machine,

is therefore inadequate to express optimal reduction

for all λ-terms. Does a more fundamental model of

computation exist which is able to express optimal re-

duction for all λ-terms?

In order to avoid sharing-related unnecessary re-

ductions in the λI- and λK-calculi, it is useful to

represent λ-terms as graphs. Identical subexpressions

can then be represented by the same shared subgraph,

which only needs to be reduced once. The process of

reduction is then expressed as a sequence of graph

operations—a technique known as graph reduction

[Wad71]. In the λ-calculi, applying a function destruc-

tively modifies its body. This presents a challenge in

graph reduction when a function is shared, since it

may be applied any number of times, each with a dif-

ferent argument. A simple solution is to duplicate the

shared function’s entire subgraph before applying it.

This solution, however, leads to the second type of

unnecessary reduction because it duplicates reducible

expressions. It’s possible to mitigate the number of

duplicated reducible expressions, and thus of unneces-

sary reductions, by sharing, instead of duplicating, the

function’s maximal free subgraphs—the largest sub-

graphs in the function’s body that don’t make use of

the function’s bound variable [Wad71]. An ordering

can also be imposed such that all reducible expres-

sions inside a function are first reduced, and only then

is the function duplicated (while sharing its maximal

free subgraphs). However, a critical problem remains:

this procedure never terminates in cyclic graphs, and

cyclic graphs can arise from non-cyclic ones through

regular reduction [Wad71]. In [Wad71] this is resolved

by duplicating subgraphs whenever necessary to avoid

cycles.

The first algorithms for λ-calculi reduction which

don’t perform any unnecessary β-reductions were pro-

posed in [Lam89] and [Kat90]. The common core

idea introduced was that of interior sharing of sub-

graphs. Interior sharing enables the incremental du-

plication of shared functions, which, in turn, fully pre-

vents sharing-related unnecessary β-reductions. The

challenge of interior sharing lies in the management,

throughout reduction, of multiple simultaneous shar-

ing contexts, each of which can fully or partially over-

lap any number of others. Moreover, sharing contexts

can be recursive—a shared term can be referenced

from inside itself any number of times. In [Lam89],

interior sharing is accomplished through the use of

explicit fan-in and fan-out nodes. Remarkably, the

complex challenge then boils down to a simple ques-

tion: when a particular fan-in meets a particular fan-

out, should they annihilate one another or duplicate

one another? In [Lam89], this is solved by associating

a non-negative integer with each fan and introduc-

ing three delimiter node types to regulate fan num-

bers through graph-rewriting rules. When two fans

meet, they are annihilated if and only if their num-

bers are equal, and they duplicate one another oth-

erwise (Figure 2). The delimiters realize a notion of

enclosure around fans, ultimately ensuring that only

fans belonging to the same enclosure annihilate one

another.

a = b

a

b

a ̸= b
b b

a a

Figure 2: Interacting fans annihilate one another if
they are equal, otherwise they duplicate one another.

Concurrently, a graphical meta-model of parallel

computation called interaction nets was introduced in

[Laf90]. It was later refined and expanded in [Laf97],

once its significance was understood better. Mod-

els adhering to this framework are called interaction

systems. An interaction system is specified by a set

of agent types and a set of interaction rules—local

graph rewriting rules that operate on pairs of con-

nected agents. Agents are nodes that have one princi-

pal port and any number of auxiliary ports, including

zero. When two agents are connected via their princi-

pal ports they form an active pair, and an interaction

rule can then be applied to that pair. Since each agent

can only be part of a single active pair at a time, inter-

action systems possess a one-step diamond property,

which I denote as perfect confluence2. An extraordi-

nary consequence of perfect confluence is that every

normalizing interaction order produces the same re-

sult in the same number of interactions. Additionally,

since interaction rules are local, they can be applied

simultaneously without synchronization. These prop-

erties make interaction systems highly suitable for ex-

pressing optimal parallel algorithms.

An interaction system for λ-calculi reduction based

on [Lam89], along with a translation method from

and to λ-terms, was proposed in [GAL92a, GAL92b].

2Some authors denote this as strong confluence, but strong confluence has historically denoted a weaker property which is not
one-step. I propose using the term perfect confluence for the one-step variant to avoid confusion.

A similar interaction system, combined with a dif-

ferent translation method, was presented in [AG98].

These interaction systems employ indexed agents

called brackets and croissants, which increment and

decrement, respectively, the index of higher-index

agents they interact with. As explained in detail in

[AG98], there are many ways to translate λ-terms

into interaction nets using brackets and croissants.

These agents effectively delimit sharing scopes, and,

as such, are also referred to as delimiters. A compre-

hensive analysis and comparison of the computational

efficiency of these algorithms, including the original

[Lam89], was supplied in [LM99]. Unfortunately, all

these algorithms have frustrating characteristics that

profoundly undermine reduction performance. Crit-

ically, delimiters accumulate during reduction until

delimiter interactions completely overwhelm fan in-

teractions. Additionally, delimiters are often present

in nets associated with λ-terms that have no sharing,

serving no purpose there.

A more recent interaction system for λ-calculi re-

duction, called Lambdascope, was presented in [OL04].

It uses five agent types: an abstractor, an applicator, a

duplicator (an indexed fan), an eraser, and an indexed

delimiter. In Lambdascope, applying an abstraction

effectively spawns two zero-indexed delimiters. This

process, along with other interaction rules, preserves

the scope of each abstraction after it has been applied.

This scope invariant, in turn, ensures interacting du-

plicators annihilate and commute when appropriate.

Delimiters move outward, expanding each scope as

much as possible. Sibling scopes eventually coalesce,

which helps reduce the number of total scopes and

thus the number of total delimiters. However, sibling-

less scopes and their delimiters are preserved perpet-

ually. As a result, Lambdascope also suffers from a

devastating accumulation of delimiters. Additionally,

since there’s no mechanism to decrement indexes, they

grow without bound as reduction progresses.

For example, when reducing the non-normalizing

λ-term (λx.x x)(λy.y y) with these algorithms, every

iteration creates new delimiters. Each new delimiter

takes up additional memory (space), and leads to ad-

ditional unnecessary interactions (time). Addition-

ally, the existing algorithms fail to establish a global

reduction order, which is unfortunately critical to en-

sure that all nets associated with normalizing λ-terms

normalize. Not only are the existing algorithms un-

satisfactory from a theoretical perspective, their inef-

ficiencies preclude them from being used at the core

of programming language implementations.

In this paper, I present a model of universal par-

allel computation called ∆-Nets, and a method to

translate λ-terms into ∆-nets and back. Together,

the system and translation method constitute an al-

gorithm for optimal parallel λ-reduction. As an in-

teraction system, the core of the model is perfectly

confluent: every normalizing reduction order produces

the same result in the same number of steps. The

core model is then necessarily extended with non-

interaction canonicalization rules, which depart from

the interaction paradigm. Along with a global reduc-

tion order, canonicalizations ensure Church–Rosser

confluence and optimality in nonlinear systems. The

∆-Nets algorithm solves the longstanding enigma of

optimal λ-calculi reduction with groundbreaking clar-

ity. Instead of making use of delimiters, sharing is ex-

pressed through a single agent type which allows any

number of auxiliary ports, called a replicator. Each

instance of a replicator incorporates information that

in previous models was spread across multiple agents,

such as indexed fans and delimiters. This consolida-

tion of information enables simplifications that were

previously unfeasible, and leads to constant memory

usage in the reduction of (λx.x x)(λy.y y), for exam-

ple. Finally, I show that the λ-calculus can be un-

derstood as a projection of ∆-Nets. The additional

degrees of freedom in ∆-Nets allow it to realize opti-

mal reduction in the manner envisioned by Lévy, i.e.,

no reduction operation is applied which is rendered

unneccessary later, and no reduction operation which

is necessary is applied more than once.

2. Core Interaction System

At its core, a ∆-net is an interaction net with three

agent types: a fan, an eraser, and a replicator.

fan eraser
replicator

. . .d0 d1 dn

l

di ∈ Z l, i, n ∈ N 0 ≤ i ≤ n

Figure 3: The three ∆-Nets agent types.

Fans have two auxiliary ports, and erasers have

none. Each replicator can have a different natural

number of auxiliary ports, and each of those ports has

an associated integer called a level delta. Additionally,

each replicator has an associated non-negative integer

called a level. As a point of reference, an agent’s aux-

iliary ports are ordered in a clockwise orientation, i.e.,

from left to right when the principal port points down.

Fans are sufficient to express optimal parallel re-

duction in the λL-calculus. Erasers are needed to

express optimal parallel reduction involving erasure.

Replicators are needed to express optimal parallel re-

duction involving sharing. As such, the ∆-Nets core

interaction system decomposes perfectly into three

overlapping subsystems, each analogous to a substruc-

ture λ-calculus. The full ∆-Nets system may also be

referred to as ∆K-Nets. The four systems are:

• ∆L-Nets: the linear ∆-Nets subsystem, which

only uses fans, and expresses optimal parallel re-

duction in the λL-calculus.

• ∆A-Nets: the affine ∆-Nets subsystem, which

uses fans and erasers, and expresses optimal par-

allel reduction in the λA-calculus.

• ∆I-Nets: the relevant ∆-Nets subsystem, which

uses fans and replicators, and expresses optimal

parallel reduction in the λI-calculus.

• ∆K-Nets: the full ∆-Nets system, which uses

fans, erasers and replicators, and expresses opti-

mal parallel reduction in the λK-calculus.

When equal agents interact, they annihilate one

another. In general, two replicators are equal if and

only if they have the same level, number of auxiliary

ports, and level deltas. However, when a ∆-net is

constructed from a λ-term via the translation method

presented in the next section, interacting replicators

that have the same level are guaranteed to be equal.

As such, only replicator levels need to be compared

for equality in practice. Equal-agent interactions are

called annihilations.

When distinct agents interact, each agent travels

through and past the other and is potentially copied

or erased in the process, depending on how many aux-

iliary ports the other agent has. Since an eraser has no

auxiliary ports, it erases every agent it interacts with.

As such, distinct-agent interactions involving erasers

. . .d0 d1 dn

l

.

. . .

. . .d0 d1 dn

l

. . .

.d0 d1 dn d0 d1 dn

. . .

. . .

l l

. . .

. . .

. . .

. . .

l = k

. . .

. . .

d0 d1 dn

e0e1em

l

k

. . .

. . .

l < k

.

.

e0e1em

k + d0
e0e1em

k + d1
e0e1em

k + dn

d0 d1 dn

l

d0 d1 dn

l

d0 d1 dn

l

. . .

. . .

. . .

. . .

Figure 4: The core ∆-Nets interaction rules.

are called erasures. The remainder of distinct-agent

interactions are called commutations. When a replica-

tor interacts with a fan, the replicator travels through

and out of the fan’s two auxiliary ports, resulting in

two exact copies of the replicator. Simultaneously, the

fan travels through and out of all of the replicator’s

auxiliary ports, resulting in a fan for each replicator

auxiliary port.

When two distinct replicators interact, the lower-

level one replicates the higher-level one once for each

of the lower-level one’s auxiliary ports, while, simulta-

neously, the higher-level one duplicates the lower-level

one once for each of the higher-level one’s auxiliary

ports. Note that whereas a duplication produces ex-

act copies, a replication produces copies that may or

may not be exact. Replicators are so named because

the copies they produce of other replicators are, by de-

sign, not necessarily exact. Each resulting replica of

the higher-level replicator may have a different level,

determined by the level delta associated to the aux-

iliary port of the lower-level replicator that it travels

out of. The level of each resulting replica is the sum

of the level of the original higher-level replicator and

the appropriate level delta of the lower-level replica-

tor. The ∆-Nets interaction rules are illustrated in

Figure 4.

3. From λ-terms to ∆-nets

Definition. Let Σ = {L,A, I,K}. For all S ∈ Σ, let

ΛS be the set of all λS-terms and ∆S be the set of

all ∆S-nets. For all S ∈ Σ, there exists a bijection

ϕS : ΛS → ∆c
S which maps every λS-term to a canon-

ical ∆S-net.

∆c
S = {ϕS(λS) | ∀λS ∈ ΛS} (canonical ∆S-nets)

∆p
S = {δpS | ∀δcS ∈ ∆c

S , δcS
∆∗

→ δpS} (proper ∆S-nets)

∆c
S ⊆ ∆p

S ⊂ ∆S

The bijections ϕS , ∀S ∈ Σ, are defined induc-

tively, with the rules for the general ϕK case illus-

trated in Figure 5. In the description that follows,

the minor differences in ϕL, ϕA, and ϕI are noted

where appropriate. Each outer dashed rectangle in

Figure 5 contains a ∆-net fragment that represents

the λ-term specified above it. Each inner dashed rect-

angle is a slot for the ∆-net that represents the in-

ner term. Each thick vertical dashed line represents a

non-negative integer number of parallel wires (includ-

ing zero). Every dashed rectangle, outer or inner, has

the same interface—a single wire entering at the top

and a non-negative integer number of wires leaving

at the bottom. Each λ-term has a subscript associ-

ated with it, which represents the level of that term.

The level of the outermost term is set to zero, which

inductively sets all other levels. The level of an ap-

plication’s argument is one greater than that of the

application itself, and the level of a replicator is one

greater than that of its associated abstraction. These

levels are ultimately used to determine the level and

level deltas of replicators.

[λx.M]l, x ̸∈ FV (M)

λ

[M]l

di = li − (l + 1)

[λx.M]l, x ∈ FV (M)

λ

. . .

[M]l

l0 l1 ln

d0 d1 dn

l + 1

[MN]l

@

[M]l [N]l+1

[x]l, x ̸∈ FV (∗)

l

[x]l, x ∈ FV (∗)

x

Figure 5: The inductive definition of ϕK , a bijection
which translates λK-terms into canonical ∆K-nets.

There are two ∆-net fragments for variables, one

for variables that are free in the outermost λ-term

(x ∈ FV (∗)), and one for variables that are not

(x ̸∈ FV (∗)), i.e., that are bound by some abstrac-

tion. The free-variable fragment contains a single-port

(non-agent) node, which is represented by the name of

the associated free variable in the λ-term. The bound-

variable fragment is just a vertical wire. An instance

of the bound-variable fragment which represents the

ith occurrance of a bound variable in the associated

λ-term has its bottom wire endpoint connected to the

ith auxiliary port of the replicator that shares that

variable. The bottom wire endpoint of each bound-

variable fragment has a level associated with it, which

is equal to the level of the variable. These wire end-

point levels are referenced in the fragment that fea-

tures a replicator, in the definition of the level deltas

di. The level delta associated to an auxiliary port of a

replicator is equal to the level of the wire connected to

that auxiliary port minus the level of the replicator.

There are also two ∆-net fragments for abstrac-

tions, one for those which use their bound variables

and one for those which don’t. In both, the abstrac-

tion itself is represented by a fan pointing up, labelled

with a λ3. The principal port of the fan is the par-

ent port of the abstraction. The first auxiliary port

of the fan is a child port, connected to the ∆-net that

represents the body of the abstraction. The second

auxiliary port represents the variable of the abstrac-

tion, and since it is connected to the parent of the

variable, it is another parent port. If an abstraction

doesn’t use its bound variable, the fan’s second aux-

iliary port is connected to an eraser. The fragment

with this eraser is only needed when translating ex-

pressions from λ-calculi with erasure, and, as such, it

is exclusively part of ϕA and ϕK . When translating ex-

pressions from λ-calculi with sharing, if an abstraction

uses its bound variable, then the fan’s second auxil-

iary port is generally connected to the principal port

of a replicator, which shares the abstraction’s vari-

able among the bound-variable fragments that repre-

sent its various occurances in the λ-term. However,

in a canonical ∆-net, a replicator with a single aux-

iliary port and a level delta of zero, regardless of the

replicator’s level, is equivalent to a wire. Therefore

such replicators are never created in the first place,

and the appropriate bound-variable fragment’s bot-

tom wire is connected directly to the abstraction fan’s

second auxiliary port instead. In ϕL and ϕA, which

translate λ-terms without sharing, the fragment with

the replicator is modified such that the replicator is

substituted by a single wire in the same way.

Finally, there is a fragment for applications, in

which the application itself is represented by a fan

pointing down, labelled with an @3. The first auxil-

iary port of the fan is the parent port of the appli-

cation. The principal port of the fan is a child port,

connected to the ∆-net that represents the function

λ-term. The second auxiliary port is another child

port, connected to the ∆-net that represents the ar-

gument λ-term. In addition to the fragments shown

in Figure 5, every canonical ∆-net has a single root

(non-agent) node, represented by a small circle, con-

nected to the top of the outermost ∆-net fragment.

Together, the root node and the free variable nodes

constitute the interface of a canonical ∆-net.

Note that both applications and abstractions are

represented by fans, and β-reduction is expressed

through fan annihilation. Whether a specific fan in

a ∆-net represents an abstraction or an application

can always be determined by inspecting the net (with-

out fan labels) and tracing paths from the root node.

While abstraction fans have two parent ports and one

child port, application fans have one parent port and

two child ports. Every port of any node (including

non-agent nodes) in a proper ∆-net is either a child

port or a parent port, and every wire connects a child

port with a parent port. Although this duality has no

direct bearing on the interaction process, it is clearly

present, and it is instrumental in some discussions.

All replicators in a canonical ∆-net are unpaired

fan-ins: each auxiliary port is a parent port and the

principal port is a child port. However, during re-

duction, fan-out replicators may be produced. In a

fan-out replicator, the principal port is a parent port

and each auxiliary port is a child port. Every commu-

tation between a fan and a replicator (either a fan-in

or a fan-out) always produces a fan-in and a fan-out.

While every fan-out is paired with at least one up-

stream fan-in, the converse is not true: fan-ins may or

may not be paired. Locally determining this pairing

efficiently is the purpose of the level delta system.

In some ways, a fan is just a replicator with two

auxiliary ports, zero level, and zero deltas. If replica-

tors were allowed to have zero auxiliary ports, then an

eraser could also just be a replicator with no auxiliary

ports and zero level (or no level). It’s tempting to

attempt to consolidate the three agents into one—the

∆-agent, if you will. However, fans and replicators

have a critical distinction in the types of their auxil-

iary ports: a replicator’s auxiliary ports are either all

parent ports or all child ports, while a fan has one of

each. This affects how replicator pairedness is tracked:

after fan replication the resulting replicators become

paired whereas in replicator replication they keep their

original status.

In standard ∆-Nets, replicators have absolute lev-

els, i.e., the initial level of each replicator is exactly

determined by how many times a path from the root

to the replicator’s principal port traverses fans out

of their second auxiliary ports. There exists a dual

formulation of the ∆-Nets system to this where repli-

cators have relative levels—all replicators start with

level zero, and a replicator’s level gets incremented

when it traverses out of the second auxiliary port of a

fan.

3Fan labels are just a visual aid and do not affect how fans interact with other agents.

4. From ∆-nets back to λ-terms

The only interaction rule in ∆L-Nets is fan anni-

hilation, which expresses β-reduction. Therefore if n

β-reductions normalize a λL-term t, then n interac-

tions normalize the λL-net ϕL(t). As a result, in the

∆L-Nets system, all proper nets are canonical, and fan

annihilations can be applied in any order, with perfect

confluence. Compared to ∆L-Nets, the other ∆-Nets

systems have additional interaction rules, which don’t

have λ-calculus analogues.

In ∆-Nets systems with erasure, applying an ab-

straction which doesn’t use its bound variable results

in an eraser becoming connected to a parent port.

Such an eraser could erase abstraction fans and fan-

out replicators, but if it reaches the parent port of

an application fan, for example, which is an auxiliary

port, the erasure process would cease. As a result,

absent additional rules, irreducible subnets would be

produced which don’t have a λ-calculus analogue. As

an extreme example, applying an abstraction which

doesn’t use its bound variable to an argument which

only uses globally-free variables produces a subnet

which is disjointed from the root. In order to elimi-

nate all such subnets a final canonicalization reduction

step is introduced in ∆-Nets systems with erasure: all

parent-child wires starting from the root are traversed

and nodes are marked. All non-marked nodes are then

erased, and wires that were connected to these nodes

are instead connected to erasers. This final canonical-

ization erasure step dispenses with the need to apply

erasure and eraser annihilation rules. In fact, this step

can be applied at any point during reduction in order

to reduce the net size, effectively trading computation

(time) for memory (space). In order to keep memory

usage to a minimum, this step should be applied after

every application of an abstraction which doesn’t use

its bound variable.

In order to ensure that no reduction operations are

applied in a subnet that is later going to be erased, a

sequential leftmost-outermost reduction order needs

to be followed. Therefore, in the ∆A-Nets system, fan

annihilations are applied in leftmost-outermost order,

with the final erasure canonicalization step ensuring

perfect confluence, and producing a normal canonical

∆A-net.

During reduction of ∆I- and ∆K-Nets, replica-

tors can combine into replicator trees. A replicator

tree is a subnet containing only replicator agents such

that each one’s principal port is connected to an aux-

iliary port of another, except for the tree’s root repli-

cator. In general, replicators that belong to the same

tree cannot be merged during reduction because they

may be paired with other replicators elsewhere. How-

ever, if consecutive replicators in a replicator tree are

known to be unpaired, they can be safely merged to-

gether. Unpaired replicator merging is a canonicaliza-

tion rule present in both ∆I- and ∆K-Nets. Addition-

ally, in the ∆K-Nets system, it is possible to eliminate

unpaired replicators’ auxiliary ports which are con-

nected to erasers—a canonicalization rule called un-

paired replicator decay. As part of unpaired replicator

decay, if an unpaired replicator is left with a single

auxiliary port with a level delta of zero, it is replaced

by a wire, as it is equivalent to one. This canoni-

calization rule is applied to all unpaired replicators

as part of the erasure canonicalization step. It can

also be lazily applied to the involved unpaired replica-

tor, immediately before the fan replication, replicator

replication, and aux fan replication rules.

Replicators start as unpaired, and this status is

propagated across interactions. When an unpaired

replicator interacts with a fan, the status of both re-

sulting replicators changes to unknown. If an unpaired

replicator (A) is connected to a consecutive replicator

(B) of unknown status via an auxiliary port, and a

certain local constraint is met, then the consecutive

replicator can be determined to be unpaired, and the

two can then be merged. The constraint is met when

the second replicator’s level is greater than or equal

to the first replicator’s level, but no greater than the

first replicator’s level plus the level delta of the auxil-

iary port that connects them: 0 ≤ lB − lA ≤ d. Under

this constraint, no replicator is able to interact with

the second replicator before the first replicator is an-

nihilated. Since the first replicator is unpaired, it can

never be annihilated, and the second one must be un-

paired as well.

It is possible to limit replicators to have at most

two auxiliary ports, or even exactly two auxiliary

ports. This imposes the smallest possible upper bound

on interaction rule complexity and agent size, making

the total number of interactions an effective measure

of time complexity, and the total number of agents an

effective measure of space complexity. A tree of such

replicators can stand in for any replicator with any

number of auxiliary ports.

Replicator merging is a canonicalization rule and

not an interaction rule because it involves two agents

that are connected via ports that aren’t both princi-

pal. Merging replicators as early as possible reduces

the total number of reductions and the total number

of agents, improving space and time efficiency. The re-

duction order which guarantees that replicator merges

happen as early as possible, minimizing the total num-

ber of reductions, is a sequential leftmost-outermost

. . .

. . .

l

d0 d1 dn . . .

. . .

. . .

. . .

. . .

l

l

d0 d1 dn

d0d1dn

Figure 6: The aux fan replication canonicalization rule in ∆I- and ∆K-Nets.

order—the optimal reduction order for ∆A-, ∆I- and

∆K-Nets. In fact, any reducible pair that eventually

reaches the leftmost-outermost position unchanged

can be reduced at any time. For example, all potential

annihilations in the spine that don’t involve unpaired

replicators can be applied in any order, because they

will eventually reach the top of the spine unchanged.

On the other hand, a potential commutation that in-

volves an unpaired replicator may not reach the top of

the spine unchanged, as the involved replicator may be

merged with another beforehand, rendering its early

application suboptimal.

To see how leftmost-outermost reduction is opti-

mal in ∆I- and ∆K-Nets, observe that no commuta-

tion involving an unpaired replicator can be applied

before that replicator is merged—if merging it is at

all possible. Take a leftmost-outermost interaction be-

tween two replicators. The fan-out replicator is nec-

essarily paired. If the fan-in replicator is unpaired

and can eventually be merged, then the replicator

merging—or any intermediate reductions leading to

it—would occur higher in the spine and would be ap-

plied first. This reasoning holds even in the presence

of loops. In ∆K-Nets, the leftmost-outermost order is

critical not only to achieve optimality but also to en-

sure that all nets associated with normalizing λ-terms

normalize. As for the remaining rules, the ∆-Nets

systems inherit their optimality guarantee from the

interaction nets paradigm.

Additionally, in ∆I- and ∆K-Nets, the reduction

process needs to be split in two phases. In the first

phase the core interaction rules and unpaired replica-

tor merging are applied in leftmost-outermost order

until no further reduction can be applied. The re-

duction process then switches to the second phase,

in which the aux fan replication rule (illustrated in

Figure 6) replaces the core fan replication rule. This

second phase can be alternatively understood as modi-

fying all fans such that the first auxiliary port becomes

the principal port. This process transforms the shar-

ing structures so that all fan-out replicators are elim-

inated, all appropriate subnets are replicated, and all

fan-in replicators accumulate at the variable port of

abstraction fans. The result is a canonical ∆I-net or,

after the final erasure canonicalization step, a canon-

ical ∆K-net. Since all normal ∆-nets are canonical,

the ∆-Nets systems are all Church–Rosser confluent.

Definition. For all S ∈ Σ and for all λS ∈ ΛS, if

λS is normalizing, λS β-reduces to ϕ−1
S (ΩS(ϕS(λS)))

where ΩS : ∆p
S → ∆c

S reduces a proper ∆S-net through

interaction and canonicalization rules as defined in

this section until it is normal and canonical.

Theorem. Since ϕ−1
S ◦ ΩS is idempotent ∀S ∈ Σ, the

set of all λS-terms, ΛS, is a projection of proper

∆S-nets:

ΛS = {ϕ−1
S (ΩS(δ

p
S)) | ∀δ

p
S ∈ ∆p

S}, ∀S ∈ Σ

Moreover, since ΛS is closed under β-reduction and

∆S is closed under ∆S-interactions and canonicaliza-

tions, the λS-calculus can be interpreted as a projec-

tion of ∆S-Nets, ∀S ∈ Σ.

5. Conclusion

The existence of nonlinear proper ∆-nets which

are not canonical reflects the additional degrees of

freedom that interior sharing introduces, which are

not present in the λ-calculus. A given λI-term can

potentially be represented by many different proper

∆I-nets, which differ only with respect to their shar-

ing structure. As an example, take a proper λI-net n,

with ϕ−1
I (ΩI(n)) = MM , for some λI-term M . The

λI-net n may have two distinct but equal subnets that

each represent M , or it may have a single such subnet

which is shared among the two occurrances in the ap-

plication. In fact, the sharing structure of n could be

arbitrarily complex. These additional degrees of free-

dom allow ∆-Nets to realize optimal reduction in the

manner envisioned by Lévy, i.e., no reduction opera-

tion is applied which is rendered unneccessary later,

and no reduction operation which is necessary is ap-

plied more than once.

References

[Chu36] A. Church, An Unsolvable Problem of Ele-

mentary Number Theory, 1936

[Tur36] A. M. Turing, On Computable Num-

bers, with an Application to the Entschei-

dungsproblem, 1936

[Tur37] A. M. Turing, Computability and λ-

definability, 1937

[Chu41] A. Church, The Calculi of Lambda-

Conversion, 1941

[Wad71] C. P. Wadsworth, Semantics and Pragmat-

ics of the Lambda Calculus, PhD Thesis,

Oxford, 1971

[Lev78] J.-J. Lévy, Réductions Correctes et Op-

timales dans le Lambda-Calcul, Doctorat

d’État, Paris 7, 1978

[Lev80] J.-J. Lévy, Optimal Reductions in The

Lambda-Calculus, 1980

[Bar84] H. P. Barendregt, The Lambda Calculus:

Its Syntax and Semantics, 1984

[Bar87] H. P. Barendregt, J. R. Kennaway,

J. W. Klop, M. R. Sleep, Needed Reduc-

tion and Spine Strategies for the Lambda

Calculus, 1987

[Lam89] J. Lamping, An Algorithm for Optimal

Lambda Calculus Reduction, 1989

[Kat90] V. K. Kathail, Optimal Interpreters for

Lambda-calculus Based Functional Lan-

guages, 1990

[Laf90] Y. Lafont, Interaction Nets, 1990

[GAL92a] G. Gonthier, M. Abadi, J.-J. Lévy, The

Geometry of Optimal Lambda-Reduction,

1992

[GAL92b] G. Gonthier, M. Abadi, J.-J. Lévy, Linear

Logic Without Boxes, 1992

[Jac93] B. Jacobs, Semantics of lambda-I and of

other substructure lambda calculi, 1993

[Laf97] Y. Lafont, Interaction Combinators, 1997

[AG98] A. Asperti, S. Guerrini, The Optimal Im-

plementation of Functional Programming

Languages, 1998

[LM99] J. L. Lawall, H. G. Mairson, Optimality

and inefficiency: what isn’t a cost model

of the lambda calculus?, 1999

[OL04] V. van Oostrom, K.-J. van de Looij, Lamb-

dascope, 2004

	Introduction
	Core Interaction System
	From -terms to -nets
	From -nets back to -terms
	Conclusion

