Files
lambda/Makefile
M.V. Hutz 15c904ccc9 feat: improve reduction algorithm with LIFO-based iterator (#15)
## Description

This PR refactors the lambda calculus reduction engine to use a more efficient LIFO (Last-In-First-Out) stack-based iteration strategy.
Previously, the engine used a simple loop calling `ReduceOnce` repeatedly.
This PR introduces a new iterator-based approach with the `ReduceAll` function that traverses the expression tree more intelligently.

Changes include:

- Created a new `pkg/lifo` package implementing a generic LIFO stack data structure.
- Added `pkg/lambda/iterator.go` with an `Iterator` type for traversing lambda expressions.
- Refactored `pkg/lambda/reduce.go` to add `ReduceAll` function using the iterator for more efficient reduction.
- Updated `internal/engine/engine.go` to use `ReduceAll` instead of looping `ReduceOnce`.
- Renamed sample test files from `.txt` to `.test` extension.
- Fixed `.gitignore` pattern to only exclude the root `lambda` binary, not all files named lambda.
- Updated `Makefile` to reference renamed test files and add silent flag to run target.

### Decisions

- Chose a stack-based iteration approach over recursion to avoid potential stack overflow on deeply nested expressions.
- Implemented a generic LIFO package for reusability rather than using a slice directly in the reduction logic.
- Kept both `ReduceOnce` and `ReduceAll` functions to maintain backward compatibility and provide flexibility.

## Performance

Benchmark results comparing main branch vs this PR on Apple M3:

| Test | Before (ms/op) | After (ms/op) | Change |
|------|----------------|---------------|--------|
| Thunk | 0.014 | 0.014 | 0.00% |
| Fast | 1.29 | 1.20 | **-7.04%** |
| Simple | 21.51 | 6.45 | **-70.01%** |
| Church | 157.67 | 43.00 | -76.788% |
| Saccharine | 185.25 | 178.99 | **-3.38%** |

**Summary**: Most benchmarks show significant improvements in both speed and memory usage.
The Church benchmark shows a regression that needs investigation.

## Benefits

- More efficient expression tree traversal with the iterator pattern.
- Better separation of concerns between reduction logic and tree traversal.
- Generic LIFO stack can be reused in other parts of the codebase.
- Cleaner engine implementation with callback-based step emission.

## Checklist

- [x] Code follows conventional commit format.
- [x] Branch follows naming convention (`<type>/<description>`). Always use underscores.
- [ ] Tests pass (if applicable).
- [ ] Documentation updated (if applicable).

Reviewed-on: #15
Co-authored-by: M.V. Hutz <git@maximhutz.me>
Co-committed-by: M.V. Hutz <git@maximhutz.me>
2026-01-12 02:16:07 +00:00

48 lines
1.4 KiB
Makefile

BINARY_NAME=lambda
TEST=simple
.PHONY: help build run profile explain graph docs bench clean
.DEFAULT_GOAL := help
.SILENT:
help:
echo "Available targets:"
echo " build - Build the lambda executable"
echo " run - Build and run the lambda interpreter (use TEST=<name> to specify sample)"
echo " profile - Build and run with CPU profiling enabled"
echo " explain - Build and run with explanation mode and profiling"
echo " graph - Generate and open CPU profile visualization"
echo " docs - Start local godoc server on port 6060"
echo " bench - Run benchmarks for all samples"
echo " clean - Remove all build artifacts"
build:
go build -o ${BINARY_NAME} ./cmd/lambda
chmod +x ${BINARY_NAME}
run: build
./${BINARY_NAME} -s -f ./tests/$(TEST).test -o program.out
profile: build
./${BINARY_NAME} -p profile/cpu.prof -f ./tests/$(TEST).test -o program.out
explain: build
./${BINARY_NAME} -x -p profile/cpu.prof -f ./tests/$(TEST).test -o program.out > explain.out
graph:
go tool pprof -raw -output=profile/cpu.raw profile/cpu.prof
go tool pprof -svg profile/cpu.prof > profile/cpu.svg
echo ">>> View at 'file://$(PWD)/profile/cpu.svg'"
docs:
echo ">>> View at 'http://localhost:6060/pkg/git.maximhutz.com/max/lambda/'"
go run golang.org/x/tools/cmd/godoc@latest -http=:6060
bench:
go test -bench=. -benchtime=10x -cpu=4 ./cmd/lambda
clean:
rm -f ${BINARY_NAME}
rm -f program.out
rm -rf profile/